Filter
  • Zeitbezug (105)
    -
  • Frequenz (132)
  • Kategorien
  • Datenanbieter
  • Art des Zugangs
  • Lizenzen

203 Datensätze

Luft- und Raumfahrt

Alles zurücksetzen

This dataset is a derivative of the WSF3D raster dataset tailored for the web. As a tiled vector dataset, it enables dynamic client-side visualization of the WSF3D metrics

Luft- und Raumfahrt
Straßen
Bereitgestellt durch

German Aerospace Center (DLR)

Art des Datenzugangs

WWW

Aktualität der Datensatzbeschreibung

02.03.2023

Zeitbezug der Daten

01.01.2012 — 31.12.2019

Aktualisierungsfrequenz

Unregelmäßig

Raumbezug

This product shows the mean snow cover duration (SCDmean), which is updated each year and consists of the arithmetic mean for the entire time series since the hydrological year 2001. The hydrological year begins in the meteorological autumn (October 1 of the previous year in the northern hemisphere or March 1 of the reference year in the southern hemisphere) and ends with the meteorological summer (northern hemisphere: August 31 of the reference year; southern hemisphere: February 28/29 of the following year). Analogous to the annual products for snow cover duration, the entire year as well as the early season (until mid-winter) and the late season (from mid-winter) are taken into account here.
The “Global SnowPack” is derived from daily, operational MODIS snow cover product for each day since February 2000. Data gaps due to polar night and cloud cover are filled in several processing steps, which provides a unique global data set characterized by its high accuracy, spatial resolution of 500 meters and continuous future expansion. It consists of the two main elements daily snow cover extent (SCE) and seasonal snow cover duration (SCD; full and for early and late season). Both parameters have been designated by the WMO as essential climate variables, the accurate determination of which is important in order to be able to record the effects of climate change. Changes in the largest part of the cryosphere in terms of area have drastic effects on people and the environment.
For more information please also refer to:

Dietz, A.J., Kuenzer, C., Conrad, C., 2013. Snow-cover variability in central Asia between 2000 and 2011 derived from improved MODIS daily snow-cover products. International Journal of Remote Sensing 34, 3879–3902. https://doi.org/10.1080/01431161.2013.767480
Dietz, A.J., Kuenzer, C., Dech, S., 2015. Global SnowPack: a new set of snow cover parameters for studying status and dynamics of the planetary snow cover extent. Remote Sensing Letters 6, 844–853. https://doi.org/10.1080/2150704X.2015.1084551
Dietz, A.J., Wohner, C., Kuenzer, C., 2012. European Snow Cover Characteristics between 2000 and 2011 Derived from Improved MODIS Daily Snow Cover Products. Remote Sensing 4. https://doi.org/10.3390/rs4082432
Dietz, J.A., Conrad, C., Kuenzer, C., Gesell, G., Dech, S., 2014. Identifying Changing Snow Cover Characteristics in Central Asia between 1986 and 2014 from Remote Sensing Data. Remote Sensing 6. https://doi.org/10.3390/rs61212752
Rößler, S., Witt, M.S., Ikonen, J., Brown, I.A., Dietz, A.J., 2021. Remote Sensing of Snow Cover Variability and Its Influence on the Runoff of Sápmi’s Rivers. Geosciences 11, 130. https://doi.org/10.3390/geosciences11030130

Luft- und Raumfahrt
Straßen
Bereitgestellt durch

German Aerospace Center (DLR)

Art des Datenzugangs

WWW / WMS

Aktualität der Datensatzbeschreibung

02.03.2023

Zeitbezug der Daten

01.01.2000 — 28.02.2022

Raumbezug

This landcover map was produced with a classification method developed in the project incora (Inwertsetzung von Copernicus-Daten für die Raumbeobachtung, mFUND Förderkennzeichen: 19F2079C) in cooperation with ILS (Institut für Landes- und Stadtentwicklungsforschung gGmbH) and BBSR (Bundesinstitut für Bau-, Stadt- und Raumforschung) funded by BMVI (Federal Ministry of Transport and Digital Infrastructure). The goal of incora is an analysis of settlement and infrastructure dynamics in Germany based on Copernicus Sentinel data. Even though the project is concluded, the annual land cover classification product is continuously generated.

This classification is based on a time-series of monthly averaged, atmospherically corrected Sentinel-2 tiles (MAJA L3A-WASP: https://geoservice.dlr.de/web/maps/sentinel2:l3a:wasp; DLR (2019): Sentinel-2 MSI - Level 2A (MAJA-Tiles)- Germany). It consists of the following landcover classes:
10: forest
20: low vegetation
30: water
40: built-up
50: bare soil
60: agriculture

Potential training and validation areas were automatically extracted using spectral indices and their temporal variability from the Sentinel-2 data itself as well as the following auxiliary datasets:
- OpenStreetMap (Map data copyrighted OpenStreetMap contributors and available from htttps://www.openstreetmap.org)
- Copernicus HRL Imperviousness Status Map 2018 (© European Union, Copernicus Land Monitoring Service 2018, European Environment Agency (EEA))
- S2GLC Land Cover Map of Europe 2017 (Malinowski et al. 2020: Automated Production of Land Cover/Use Map of Europe Based on Sentinel-2 Imagery. Remote Sens. 2020, 12(21), 3523; https://doi.org/10.3390/rs12213523)
- Germany NUTS administrative areas 1:250000 (© GeoBasis-DE / BKG 2020 / dl-de/by-2-0 / https://gdz.bkg.bund.de/index.php/default/nuts-gebiete-1-250-000-stand-31-12-nuts250-31-12.html)
- Contains modified Copernicus Sentinel data (2020), processed by mundialis

Processing was performed for blocks of federal states and individual maps were mosaicked afterwards.
For each class 100,000 pixels from the potential training areas were extracted as training data.

An exemplary validation of the classification results was perfomed for the federal state of North Rhine-Westphalia as its open data policy allows for direct access to official data to be used as reference. Rules to convert relevant ATKIS Basis-DLM object classes to the incora nomenclature were defined. Subsequently, 5.000 reference points were randomly sampled and their classification in each case visually examined and, if necessary, revised to obtain a robust reference data set. The comparison of this reference data set with the incora classification yielded the following results:

overall accuracy: 83.5%

class: user's accuracy / producer's accuracy (number of reference points n)
forest: 90.6% / 91.9% (1410)
low vegetation: 69.2% / 82.8% (844)
water: 97.0% / 94.2% (69)
built-up: 96.5% / 97.4% (983)
bare soil: 8.5% / 68.3% (41)
agriculture: 96.6% / 68.4% (1653)

Compared to the previous years, the overall accuracy and accuracies of some classes is reduced. 2021 was a rather cloudy year in Germany, which means that the detection of agricultural areas is hampered as it is based on the variance of the NDVI throughout the year. With fewer cloud-free images available, the NDVI variance is not fully covered and as no adaptations have been applied to the algorithm, agricultural fields may get classified as low vegetation or bare soil more often.
Another reason for lower classification accuracy is the significant damage that occured to forest areas due to storm and bark beetle. The validation dataset was generated based on aerial imagery from the years 2018/2019 which and is slowly becoming obsolete. An up-to-date validation dataset will be applied.

Incora report with details on methods and results: pending

mFUND-Projekt: incora, FKZ: 19F2079C

Luft- und Raumfahrt
Bereitgestellt durch

mundialis GmbH & Co. KG

Art des Datenzugangs

Dateidownload

Aktualität der Datensatzbeschreibung

28.02.2023

Zeitbezug der Daten

01.01.2021 — 31.12.2021

Aktualisierungsfrequenz

Unregelmäßig

Raumbezug

This landcover map was produced as an intermediate result in the course of the project incora (Inwertsetzung von Copernicus-Daten für die Raumbeobachtung, mFUND Förderkennzeichen: 19F2079C) in cooperation with ILS (Institut für Landes- und Stadtentwicklungsforschung gGmbH) and BBSR (Bundesinstitut für Bau-, Stadt- und Raumforschung) funded by BMVI (Federal Ministry of Transport and Digital Infrastructure). The goal of incora is an analysis of settlement and infrastructure dynamics in Germany based on Copernicus Sentinel data.

This classification is based on a time-series of monthly averaged, atmospherically corrected Sentinel-2 tiles (MAJA L3A-WASP: https://geoservice.dlr.de/web/maps/sentinel2:l3a:wasp; DLR (2019): Sentinel-2 MSI - Level 2A (MAJA-Tiles)- Germany). It consists of the following landcover classes:
10: forest
20: low vegetation
30: water
40: built-up
50: bare soil
60: agriculture

Potential training and validation areas were automatically extracted using spectral indices and their temporal variability from the Sentinel-2 data itself as well as the following auxiliary datasets:
- OpenStreetMap (Map data copyrighted OpenStreetMap contributors and available from htttps://www.openstreetmap.org)
- Copernicus HRL Imperviousness Status Map 2018 (© European Union, Copernicus Land Monitoring Service 2018, European Environment Agency (EEA))
- S2GLC Land Cover Map of Europe 2017 (Malinowski et al. 2020: Automated Production of Land Cover/Use Map of Europe Based on Sentinel-2 Imagery. Remote Sens. 2020, 12(21), 3523; https://doi.org/10.3390/rs12213523)
- Germany NUTS administrative areas 1:250000 (© GeoBasis-DE / BKG 2020 / dl-de/by-2-0 / https://gdz.bkg.bund.de/index.php/default/nuts-gebiete-1-250-000-stand-31-12-nuts250-31-12.html)
- Contains modified Copernicus Sentinel data (2016), processed by mundialis

Processing was performed for blocks of federal states and individual maps were mosaicked afterwards.
For each class 100,000 pixels from the potential training areas were extracted as training data.

An exemplary validation of the classification results was perfomed for the federal state of North Rhine-Westphalia as its open data policy allows for direct access to official data to be used as reference. Rules to convert relevant ATKIS Basis-DLM object classes to the incora nomenclature were defined. Subsequently, 5.000 reference points were randomly sampled and their classification in each case visually examined and, if necessary, revised to obtain a robust reference data set. The comparison of this reference data set with the incora classification yielded the following results:

overall accuracy: 88.4%

class: user's accuracy / producer's accuracy (number of reference points n)
forest: 96.7% / 94.3% (1410)
low vegetation: 70.6% / 84.0% (844)
water: 98.5% / 94.2% (69)
built-up: 98.2% / 89.8% (983)
bare soil: 19.7% / 58.5% (41)
agriculture: 91.7% / 85.3% (1653)

Incora report with details on methods and results: pending

mFUND-Projekt: incora, FKZ: 19F2079C

Luft- und Raumfahrt
Bereitgestellt durch

mundialis GmbH & Co. KG

Art des Datenzugangs

Dateidownload

Aktualität der Datensatzbeschreibung

28.02.2023

Zeitbezug der Daten

01.01.2016 — 31.12.2016

Aktualisierungsfrequenz

Unregelmäßig

Raumbezug

This landcover map was produced as an intermediate result in the course of the project incora (Inwertsetzung von Copernicus-Daten für die Raumbeobachtung, mFUND Förderkennzeichen: 19F2079C) in cooperation with ILS (Institut für Landes- und Stadtentwicklungsforschung gGmbH) and BBSR (Bundesinstitut für Bau-, Stadt- und Raumforschung) funded by BMVI (Federal Ministry of Transport and Digital Infrastructure). The goal of incora is an analysis of settlement and infrastructure dynamics in Germany based on Copernicus Sentinel data.

This classification is based on a time-series of monthly averaged, atmospherically corrected Sentinel-2 tiles (MAJA L3A-WASP: https://geoservice.dlr.de/web/maps/sentinel2:l3a:wasp; DLR (2019): Sentinel-2 MSI - Level 2A (MAJA-Tiles)- Germany). It consists of the following landcover classes:
10: forest
20: low vegetation
30: water
40: built-up
50: bare soil
60: agriculture

Potential training and validation areas were automatically extracted using spectral indices and their temporal variability from the Sentinel-2 data itself as well as the following auxiliary datasets:
- OpenStreetMap (Map data copyrighted OpenStreetMap contributors and available from htttps://www.openstreetmap.org)
- Copernicus HRL Imperviousness Status Map 2018 (© European Union, Copernicus Land Monitoring Service 2018, European Environment Agency (EEA))
- S2GLC Land Cover Map of Europe 2017 (Malinowski et al. 2020: Automated Production of Land Cover/Use Map of Europe Based on Sentinel-2 Imagery. Remote Sens. 2020, 12(21), 3523; https://doi.org/10.3390/rs12213523)
- Germany NUTS administrative areas 1:250000 (© GeoBasis-DE / BKG 2020 / dl-de/by-2-0 / https://gdz.bkg.bund.de/index.php/default/nuts-gebiete-1-250-000-stand-31-12-nuts250-31-12.html)
- Contains modified Copernicus Sentinel data (2019), processed by mundialis

Processing was performed for blocks of federal states and individual maps were mosaicked afterwards.
For each class 100,000 pixels from the potential training areas were extracted as training data.

An exemplary validation of the classification results was perfomed for the federal state of North Rhine-Westphalia as its open data policy allows for direct access to official data to be used as reference. Rules to convert relevant ATKIS Basis-DLM object classes to the incora nomenclature were defined. Subsequently, 5.000 reference points were randomly sampled and their classification in each case visually examined and, if necessary, revised to obtain a robust reference data set. The comparison of this reference data set with the incora classification yielded the following results:

overall accuracy: 91.9%

class: user's accuracy / producer's accuracy (number of reference points n)
forest: 98.1% / 95.9% (1410)
low vegetation: 76.4% / 91.5% (844)
water: 98.4% / 92.8% (69)
built-up: 99.2% / 97.4% (983)
bare soil: 35.1% / 95.1% (41)
agriculture: 95.9% / 85.3% (1653)

Incora report with details on methods and results: pending

mFUND-Projekt: incora, FKZ: 19F2079C

Luft- und Raumfahrt
Bereitgestellt durch

mundialis GmbH & Co. KG

Art des Datenzugangs

Dateidownload

Aktualität der Datensatzbeschreibung

28.02.2023

Zeitbezug der Daten

01.01.2019 — 31.12.2019

Aktualisierungsfrequenz

Unregelmäßig

Raumbezug

This landcover map was produced with a classification method developed in the project incora (Inwertsetzung von Copernicus-Daten für die Raumbeobachtung, mFUND Förderkennzeichen: 19F2079C) in cooperation with ILS (Institut für Landes- und Stadtentwicklungsforschung gGmbH) and BBSR (Bundesinstitut für Bau-, Stadt- und Raumforschung) funded by BMVI (Federal Ministry of Transport and Digital Infrastructure). The goal of incora is an analysis of settlement and infrastructure dynamics in Germany based on Copernicus Sentinel data.

This classification is based on a time-series of monthly averaged, atmospherically corrected Sentinel-2 tiles (MAJA L3A-WASP: https://geoservice.dlr.de/web/maps/sentinel2:l3a:wasp; DLR (2019): Sentinel-2 MSI - Level 2A (MAJA-Tiles)- Germany). It consists of the following landcover classes:
10: forest
20: low vegetation
30: water
40: built-up
50: bare soil
60: agriculture

Potential training and validation areas were automatically extracted using spectral indices and their temporal variability from the Sentinel-2 data itself as well as the following auxiliary datasets:
- OpenStreetMap (Map data copyrighted OpenStreetMap contributors and available from htttps://www.openstreetmap.org)
- Copernicus HRL Imperviousness Status Map 2018 (© European Union, Copernicus Land Monitoring Service 2018, European Environment Agency (EEA))
- S2GLC Land Cover Map of Europe 2017 (Malinowski et al. 2020: Automated Production of Land Cover/Use Map of Europe Based on Sentinel-2 Imagery. Remote Sens. 2020, 12(21), 3523; https://doi.org/10.3390/rs12213523)
- Germany NUTS administrative areas 1:250000 (© GeoBasis-DE / BKG 2020 / dl-de/by-2-0 / https://gdz.bkg.bund.de/index.php/default/nuts-gebiete-1-250-000-stand-31-12-nuts250-31-12.html)
- Contains modified Copernicus Sentinel data (2020), processed by mundialis

Processing was performed for blocks of federal states and individual maps were mosaicked afterwards.
For each class 100,000 pixels from the potential training areas were extracted as training data.

An exemplary validation of the classification results was perfomed for the federal state of North Rhine-Westphalia as its open data policy allows for direct access to official data to be used as reference. Rules to convert relevant ATKIS Basis-DLM object classes to the incora nomenclature were defined. Subsequently, 5.000 reference points were randomly sampled and their classification in each case visually examined and, if necessary, revised to obtain a robust reference data set. The comparison of this reference data set with the incora classification yielded the following results:

overall accuracy: 88.4%

class: user's accuracy / producer's accuracy (number of reference points n)
forest: 95.0% / 93.8% (1410)
low vegetation: 73.4% / 86.5% (844)
water: 98.5% / 92.8% (69)
built-up: 98.9% / 95.8% (983)
bare soil: 23.9% / 82.9% (41)
agriculture: 94.6% / 83.2% (1653)

Incora report with details on methods and results: pending

mFUND-Projekt: incora, FKZ: 19F2079C

Luft- und Raumfahrt
Bereitgestellt durch

mundialis GmbH & Co. KG

Art des Datenzugangs

Dateidownload

Aktualität der Datensatzbeschreibung

28.02.2023

Zeitbezug der Daten

01.01.2020 — 31.12.2020

Aktualisierungsfrequenz

Unregelmäßig

Raumbezug

This land cover classification of Germany was created using Sentinel-2 imagery from the years 2015 to 2017 and LUCAS 2015 in-situ reference data (https://ec.europa.eu/eurostat/web/lucas). It contains seven land cover types: (1) artificial land, (2) open soil, (3) high seasonal vegetation, (4) high perennial vegetation, (5) low seasonal vegetation, (6) low perennial vegetation and (7) water with a spatial resolution of 10m x 10m. For further information, please see the following publication: https://doi.org/10.1016/j.jag.2020.102065

Luft- und Raumfahrt
Straßen
Bereitgestellt durch

German Aerospace Center (DLR)

Art des Datenzugangs

WWW / WMS

Aktualität der Datensatzbeschreibung

09.02.2023

Zeitbezug der Daten

27.06.2015 — 29.09.2017

Aktualisierungsfrequenz

Unregelmäßig

Raumbezug

The Sentinel-2 fractional vegetation cover (fCover) product for the Netherlands was produced as part of the NextGEOSS project at the German Aerospace Center (DLR). The goal is to derive abundance maps from atmospherically corrected Sentinel-2 multispectral images for: photosynthetically active vegetation (PV); and for combined non-photosynthetically active vegetation (NPV) and bare soil (BS).

The fCover product for the Netherlands has been generated by processing 10 cloud-free Sentinel-2 tiles which covered the country on 8 September 2016. The map has a spatial resolution of 60m x 60m. The Sentinel-2 scene classification layer was used to ensure that the spectral unmixing was only performed on areas of vegetation or soil.

The abundance maps were made by performing MESMA unmixing on each pixel from an endmember library of PV and combined NPV + BS spectra. The purest pixels in a scene, called endmembers, were extracted using the Spatial-Spectral Endmember Extraction (SSEE) approach. The PV and NPV+BS endmembers were classified with a random forest approach and selected to form the spectral library. The spectral library was used in the µMESMA unmixing to get the PV and NPV+BS abundances.

Luft- und Raumfahrt
Straßen
Bereitgestellt durch

German Aerospace Center (DLR)

Art des Datenzugangs

WWW / WMS

Aktualität der Datensatzbeschreibung

19.01.2023

Zeitbezug der Daten

08.09.2016

Aktualisierungsfrequenz

Niemals

Raumbezug

The TimeScan product is based on the fully-automated analysis of comprehensive time-series acquisitions of Landsat data. Based on a user-specified definition of the required period of time, the region of interest and – optionally – the maximum cloud cover, the TimeScan processor starts with the collection of all available Landsat scenes that meet the user specification. Next, for each single scene masking of clouds, haze and shadow is conducted using the Fmask algorithm. Then, a total of 6 indices is calculated for those pixels of each single scene that have not been masked in the prior step. The set of indices includes the Normalized Difference Vegetation Index (NDVI), the Built-up Index (BI), the Modified Normalized Difference Water Index (MNDWI), the Normalized Difference Band-5 / Band-7 (ND57), the Normalized Difference Band-4 / Band-3 (ND43), and the Normalized Difference Band-3 / Band-2 (ND32). Finally, the TimeScan product is generated by calculating the temporal statistics (minimum, maximum, mean, standard deviation, mean slope) for each index over the defined period of time. Hence, in case of the defined 6 indices chosen, the TimeScan product will include a total of 30 bands (5 statistical features per index). As an additional band a quality layer is added which shows for each pixel the number of valid values (meaning times with no cloud/haze or shadow cover) that have been included in the statistics calculation.

Luft- und Raumfahrt
Straßen
Bereitgestellt durch

German Aerospace Center (DLR)

Art des Datenzugangs

WMS

Aktualität der Datensatzbeschreibung

18.01.2023

Zeitbezug der Daten

11.04.2013 — 30.10.2015

Aktualisierungsfrequenz

Unregelmäßig

Raumbezug

This product is a vector file of the protected areas of the Paraguayan Chaco. It contains information on the forest cover within each protected area and a 5, 10, and 15 km buffer zone around these areas, for the years 2000 until 2020. Hence, this product aggregates the information of 21 annual forest maps of the Paraguayan Chaco to the level of protected areas and provides the basis for further analysis as conducted in the following publication: https://doi.org/10.3390/f13010025

Luft- und Raumfahrt
Straßen
Bereitgestellt durch

German Aerospace Center (DLR)

Art des Datenzugangs

WWW / WMS

Aktualität der Datensatzbeschreibung

18.01.2023

Zeitbezug der Daten

01.01.2000 — 31.12.2020

Aktualisierungsfrequenz

Unregelmäßig

Raumbezug